Frictionless multiple impacts in multibody systems . I . Theoretical framework
نویسندگان
چکیده
A new method is proposed that can deal with multi-impact problems and produce energetically consistent and unique post-impact velocities. A distributing law related to the energy dispersion is discovered by mapping the time scale into the impulsive scale for bodies composed of rate-independent materials. It indicates that the evolution of the kinetic energy during the impacts is closely associated with the relative contact stiffness and the relative potential energy stored at the contact points. This distributing law is combined with the Darboux–Keller method of taking the normal impulse as an independent ‘time-like’ variable, which obeys a guideline for the selection of an independent normal impulse. Local energy losses are modelled with energetic coefficients of restitution at each contact point. Theoretical developments are presented in the first part in this paper. The second part is dedicated to numerical simulations where numerous and accurate results prove the validity of the approach.
منابع مشابه
Multiple impacts: A state transition diagram approach
Impact happens when two or more bodies collide, generating very large impulsive forces in a very short period of time during which kinetic energy is first absorbed and then released after some loss. This paper introduces a state transition diagram to model a frictionless multibody collision. Each state describes a different topology of the collision characterized by the set of instantaneously a...
متن کاملHybrid Complementarity Formulations for Robotics Applications
The focus of this paper is to review hybrid recursive-complementarity formulations for multibody systems characterized by a large number of bilateral constraints which are frequently encountered in robotics. Here, hybrid implies the use of complementarity contact models with recursive forward dynamics schemes. Such formulations have a common underlying structure which can be applied to multibod...
متن کاملModeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects
This study explores the use of generalized polynomial chaos theory for modeling complex nonlinear multibody dynamic systems in the presence of parametric and external uncertainty. The polynomial chaos framework has been chosen because it offers an efficient computational approach for the large, nonlinear multibody models of engineering systems of interest, where the number of uncertain paramete...
متن کاملModeling Multibody Dynamic Systems With Uncertainties. Part II: Numerical Applications
This study applies generalized polynomial chaos theory to model complex nonlinear multibody dynamic systems operating in the presence of parametric and external uncertainty. Theoretical and computational aspects of this methodology are discussed in the companion paper “Modeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects”. In this paper we illustr...
متن کاملScalable Total BETI based solver for 3D multibody frictionless contact problems in mechanical engineering
A Total BETI (TBETI) based domain decomposition algorithm with the preconditioning by a natural coarse grid of the rigid body motions is adapted for the solution of multibody frictionless contact problems of linear elastostatics and proved to be scalable, i.e., the cost of the solution is asymptotically proportional to the number of variables. The analysis admits floating bodies. The proofs com...
متن کامل